Influence of spatial resolution on fuelwood supply estimations

Authors

  • Lidia Salas-Canela Centro de Investigaciones en Geografía Ambiental (CIGA), Universidad Nacional Autónoma de México, Morelia, Michoacán, México
  • Ivan Franch-Pardo GIS Laboratory, Escuela Nacional de Estudios Superiores Morelia, (ENES, Morelia), Universidad Nacional Autónoma de México, Morelia, Michoacán, México
  • Yan Gao Centro de Investigaciones en Geografía Ambiental (CIGA), Universidad Nacional Autónoma de México, Morelia, Michoacán, México
  • Tuyeni Mwampamba Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), Universidad Nacional Autónoma de México, Morelia, Michoacán, México
  • Robert Bailis Stockholm Environment Institute (SEI)- US Center, Somerville, United States
  • Hisham Zerriffi Department of Forest Resources Management, University of British Columbia, Forest Sciences Centre, Vancouver, Canada
  • Adrián Ghilardi Centro de Investigaciones en Geografía Ambiental (CIGA), Universidad Nacional Autónoma de México, Morelia, Michoacán, México

Abstract

In this study we analyze how the spatial resolution of three satellite images affects estimates of fuelwood availability in a region located in Southern India. For this purpose, we rely on satellite imagery, ground-truthing through GNSS Data Logger, and data from productivity value records. Preliminary findings suggest that higher-resolution satellite imagery significantly improves the accuracy of fuelwood source estimations, revealing a complex mosaic of available biomass often overlooked by coarser map scales of analysis. By incorporating localized data on fuelwood collection patterns and the spatial distribution of biomass, we aim to enhance predictive models that can more accurately forecast fuelwood availability. In didactic terms, we consider this analysis to be a good example that provides a comprehensive understanding of how the characteristics of satellite imagery can influence the cartographic products that are the basis for decision making. It also has significant potential to be utilized online as a practical exercise in GIS and remote sensing courses, allowing students to practically analyze a real-world case, thereby enhancing meaningful learning.

References

Ashutosh S., “Mapping of Trees Outside Forests”, Geospatial World, 2010, https://www.geospatialworld.net/article/mapping-of-trees-outside-forests/.

Asner G.P., Knapp D.E., Broadbent E.N., Oliveira P.J., Keller M. and Silva J.N., “Selective logging in the Brazilian Amazon”. Science, 310, 5747, 2005, pp. 480-482.

Aubry-Kientz M., Dutrieux R., Ferraz A., Saatchi S., Hamraz H., Williams J., Coomes D., Piboule A. and Vincent G., “A comparative assessment of the performance of individual tree crowns delineation algorithms from ALS data in tropical forests”, Remote Sensing, 11, 9, 2019, 1086, pp. 1-21.

Bailis R., Drigo R., Ghilardi A. and Masera O., “The carbon footprint of traditional woodfuels”, Nature Climate Change, 5, 3, 2015, 266-272.

Bellefontaine R., Petit S., Pain-Orcet M., Deleporte P. and Bertault J.G., Trees outside forests. Towards a better awareness, Report of FAO, Rome, 2002.

Bensel T., “Fuelwood, deforestation, and land degradation: 10 years of evidence from Cebu province, the Philippines”, Land Degradation & Development, 19, 6, 2008, pp. 587-605.

Bearman N., Jones N., André I., Cachinho H. A. and DeMers M., “The future role of GIS education in creating critical spatial thinkers”, Journal of Geography in Higher education, 40, 3, 2016, pp. 394-408.

Dai W., Yang B., Dong Z. and Shaker A., “A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds”, ISPRS journal of photogrammetry and remote sensing, 144, 2018, pp. 400-411.

De Wasseige C. and Defourny P., “Remote sensing of selective logging impact for tropical forest management”, Forest Ecology and Management, 188,1-3, 2004, pp. 161-173.

Doubrawa B., Dalla Corte A.P. and Sanquetta C.R., “Using different satellite imagery and classification techniques to assess the contribution of trees outside forests in the municipality of Maringá, Brazil”, Revista Ceres, 60, 2013, pp.480-488.

Drigo R., Bailis R., Ghilardi A. and Masera O., Analysis of woodfuel supply, demand and sustainability in Karnataka, Report of GACC Yale-UNAM Project, India, 2014.

Eckholm E., The Other Energy Crisis: Firewood, UK, Ecologist, 1976.

Edrisi S.A., El-Keblawy A. and Abhilash P.C., “Sustainability analysis of Prosopis juliflora (Sw.) DC based restoration of degraded land in North India”, Land, 9, 2, 2020, 59, pp. 1-18.

FAO, Forest Resources Assessment 1990. Survey of tropical forest cover and study of change processes, Fao Forestry Paper 130, Rome, FAO, 1996.

FCN, “Baseline Information: Koppal Taluk, Karnataka. Fair Climate Network”, https://www.fairclimate.com/.

Fisher J.R.B., Acosta E.A., Dennedy-Frank P.J., Kroeger T. and Boucher T.M., “Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality”, Remote Sensing in Ecology and Conservation, 4, 2, 2017, pp 137-149.

Franch-Pardo I., Napoletano B.M., Bocco G., Barrasa S. and Cancer-Pomar L., “The role of geographical landscape studies for sustainable territorial planning”, Sustainability, 9, 11, 2017, 2123, pp. 1-23.

Ghilardi A., Bailis R., Mas J., Skutsch M., Elvir J., Quevedo A., Masera O., Dwivedi P., Drigo R. and Vega E., “Spatiotemporal modeling of fuelwood environmental impacts: Towards improved accounting for non-renewable biomass”, Environmental modelling & software, 82, 2016, pp. 241-254.

Ghilardi A., Guerreo G., and Masera O., “Spatial analysis of residential fuelwood supply and demand patterns in Mexico using the WISDOM approach”, Biomass and Bioenergy, 31, 7, 2007, pp. 475-491.

Goel V. and Behl H., “Fuelwood quality of promising tree species for alkaline soil sites in relation to tree age”, Biomass and Bioenergy, 10, 1, 1996, pp. 57-61.

Goel V. and Behl H., “Genetic selection and improvement of hard wood tree species for fuelwood production on sodic soil with particular reference to Prosopis juliflora”, Biomass and Bioenergy, 20, 1, 2001, pp. 9-15.

Gomes M.F., Maillard P. and Deng H., “Individual tree crown detection in sub-meter satellite imagery using Marked Point Processes and a geometrical-optical model”, Remote Sensing of Environment, 211, 2018, pp. 184-195.

Government of India, Census of India 2011 Karnataka, District Census Handbook Koppal, 2011, pp. 412.

Harris N.L., Brown S., Hagen S.C., Saatchi S.S., Petrova S., Salas W., Hansen M.C., Potapov P.V. and Lotsch A., “Baseline Map of Carbon Emissions from Deforestation in Tropical Regions”, Science, 336, 6088, 2012, pp.1573-1576.

He G., Chen X., Beaer S., Colunga M., Mertig A., An L., Zhou S., Linderman M., Ouyang Z. and Gage S., “Spatial and temporal patterns of fuelwood collection in Wolong Nature Reserve: implications for panda conservation”, Landscape and Urban Planning, 92, 1, 2009, pp 1-9.

GWIB, District Mineral Survey Report of Koppal District, Karnataka, India, 2008.

Jagger P. and Shively G., “Land use change, fuel use and respiratory health in Uganda”, Energy policy, 67, 2014, pp 713-726.

Khanna A., “Prosopis julijlora as Biomass Fuel for Green Power Generation”, in Tewari J.C., Ratha Krishnan P., Harsha S.L, Bohra H.C. (Eds.), Prosopis Juliflora: Past, Present and Future, Rajasthan, India, 2011, pp. 67-73.

Kleinn C., On large-area inventory and assessment of trees outside forests, Report of FAO in Unasylva, 51, Rome, 2000.

Krishnankutty C.N., Balachandran Thampi, K. and Chundamannil M., “Trees outside forests (TOF): a case study of the wood production-consumption situation in Kerala”, The International Forestry Review, 10, 2008, pp.156-164.

Kumar P., Setia R., Loshali D. and Pateriya B., “A Comparative Assessment between Visual Interpretation and Pixel based Approach for Land Use/Cover Mapping using IRS LISS-III Imagery”, International Journal of Applied Information Systems, 11, 11, 2017, pp. 63-67.

Lillesand T., Kiefer R.W. and Chipman J., Remote sensing and image interpretation, John Wiley & Sons, 2015.

Malarvizhi K., Kumar S.V. and Porchelvan P., “Use of high resolution Google Earth satellite imagery in landuse map preparation for urban related applications”, Procedia Technology, 24, 2016, pp. 1835-1842.

Martínez V. J., Marta G., and Pilar E. D., “Satellite images and teaching of Geography”, J-READING (Journal of Research and Didactics in Geography), 1, 4, 2015, pp. 55-66.

Mas J.F., Reyes D.G. and Pérez V.A., “Evaluación de la confiabilidad temática de mapas o de imágenes clasificadas: una revisión”, Investigaciones geográfica, 51, 2003, pp. 53-72.

Oduor N. and Githiomi J.K., “Fuel-wood energy properties of Prosopis juliflora and Prosopis pallida grown in Baringo District, Kenya”, Academic Journals, 8, 21, 2013 pp. 2477-2481.

Palmentieri S., “E-Learning in Geography: new perspectives in post-pandemic”, AIMS Geosciences, 8, 1, pp. 52-67.

Pandey D., Fuelwood studies in India: myth and reality, CIFOR, Jakarta, 2002.

Pasiecznik N.M., Felker P., Harris P.J., Harsh L., Cruz G., Tewari J., Cadoret K. and Maldonado L.J., The Prosopis juliflora-Prosopis pallida complex: a monograph (Vol. 172), Coventry, HDRA, 2001.

Plutino A. and Polito I., “The emotional perception of landscape between research and education”, J-READING (Journal of Research and Didactics in Geography), 1, 6, 2017, pp. 45-59.

Ponzoni F.J., Galvao L.S. and Epiphanio J.C. N., “Spatial resolution influence on the identification of land cover classes in the Amazon environment”, Anais da Academia Brasileira de Ciências, 74, 2002, pp 717-725.

Priego S.A. and Bocco V.G., Propuesta para la generación semiautomatizada de unidades de paisajes, Universidad Nacional Autónoma de México, 2011

Ramachandra T., “Mapping of fuelwood trees using geoinformatics”, Renewable and Sustainable Energy Reviews, 14, 2, 2010, 642-654.

Ramachandra T., Vamseekrishna S. and Shruthi BV., “Decision support system to assess regional biomass energy potential”, International Journal of Green Energy, 1, 4, 2004, pp. 1-22.

Rapanta C., Botturi L., Goodyear P., Guàrdia L. and Koole M., “Online university teaching during and after the Covid-19 crisis: Refocusing teacher presence and learning activity”, Postdigital science and education, 2, 2020, pp. 923-945.

Ridha S., Putri E., Kamil P.A., Utaya S., Bachri S. and Handoyo B., “The importance of designing GIS learning material based on spatial thinking”, IOP Conference Series: Earth and Environmental Science, 485, 1, 2020, pp. 1-7.

Rüger N., Williams-Linera G., Kissling W. D. and Huth A., “Long-term impacts of fuelwood extraction on a tropical montane cloud forest”, Ecosystems, 11, 6, 2008, pp. 868-881.

RWEDP, Regional study on wood energy today and tomorrow in Asia, Report of Forestry Economics and Policy Division, Bangkok, 1996.

Salvador R., Pons X. and Diego F., “Validación de un método de corrección radiométrica sobre diferentes áreas montañosas”, Revista de teledetección, 7, 1996, pp. 21-25.

Saraswathi K. and Chandrasekaran S., “Biomass yielding potential of naturally regenerated Prosopis juliflora tree stands at three varied ecosystems in southern districts of Tamil Nadu, India”, Environmental Science and Pollution Research, 23, 10, 2016, pp. 9440-9447.

Schnell S., Kleinn C. and Ståhl G., “Monitoring trees outside forests: a review”, Environmental Monitoring and Assessment, 187, 600, 2015, pp. 2-17.

Schulze U., Kanwischer D. and Reudenbach C., “Essential competences for GIS learning in higher education: a synthesis of international curricular documents in the GIS&T domain”, Journal of Geography in Higher Education, 37, 2, 2013, pp. 257-275.

Shafeian E., Fassnacht F.E. and Latifi H., “Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and very high-resolution data”, International Journal of Applied Earth Observation and Geoinformation, 105, 2021, 102621, pp. 1-16.

Shaheen H., Azad B., Mushtaq A. and Khan R.W.A., “Fuelwood consumption pattern and its impact on forest structure in Kashmir Himalayas”, Bosque, 37, 2, 2015, pp. 419-424.

Shanwad U., Chittapur B., Honnalli S., Shankergoud I. and Gebremedhin T., “Management of Prosopis juliflora through chemicals: a case study in India”, Management, 5, 23, 2015, pp. 30-38.

Sinton D.S., “Roles for GIS within higher education”, Journal of Geography in Higher Education, 33, S1, 2009, pp. S7-S16.

Souza Jr C.M., Siqueira J.V., Sales M.H., Fonseca A.V., Ribeiro J.G., Numata I., Cochrane M.A., Barber C.P., Roberts D.A. and Barlow J., “Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon”, Remote Sensing, 5, 11, 2013, pp. 5493-5513.

Walter K.J. and Armstrong K.V., “Benefits, threats and potential of Prosopis in South India”, Forests, Trees and Livelihoods, 23, 4, 2014, pp. 232-247.

Wang Q., Chen J. and Tian Y., “Remote sensing image interpretation study serving urban planning based on GIS”, The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 37, 2008, pp. 453-456.

Zanella L., Sousa C., Souza C., Carvalho L. and Borém R., “A comparison of visual interpretation and object-based image analysis for deriving landscape metrics”, Proceedings of the 4th GEOBIA, 7-9, 2012, pp. 509-514.

Zhang C. and Li X., “Land use and land cover mapping in the era of big data”, Land, 11, 10, 2022, 1692, pp. 1-22.

Downloads

Published

2024-12-18

Issue

Section

Articles